REPORT DOCUMENTATION PAGE

Form Approved
OMB No 0704-0188

AD-A262 946

ation is estimated to average 1 hour per readonse including the time for inviewing instructions searching existing data sources impleting and revening the collection of information. Send comments regarding this burden estimate or any other aspect of this reducing this burden to Washington Headquarters Services. Directorate for information Operations and Reports. 32.5 settlesson 32 and to the Office of Management and audget Paperwork Reduction Project (0704-0188). Washington. DC 2050.)

2. REPORT DATE 4/3/1993 3. REPORT TYPE AND DATES COVERED

Technical

Intracluster Reactions of Chlorobenzene/Ammonia Mixed Complexes

5. FUNDING NUMBERS

R & T Code:

413n008

39

6. AUTHOR(5)

J. R. Grover, B.-M. Cheng, W. J. Herron, M. T. Coolbaugh,

W. R. Peifer, and James F. Garvey

G N00014-88-K-0483

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Dept. of Chemistry, Acheson Hall

State University of New York at Buffalo Buffalo, NY 14214

PERFORMING ORGANIZATION REPORT NUMBER

Technical Report

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Dr. R. DeMarco/Dr. J. Pazik, Chemistry Division

Office of Naval Research

800 N. Quincy St.

Arlington, VA

22217
11. SUPPLEMENTARY NOTES

F

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

ELECTE APR1 2 1993

DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The spontaneous disintegration of $(C_6H_5Cl\cdot NH_3)^+$ to form $C_6H_5NH_3^+$ has been intensively studied by two-photon techniques at other laboratories. We examined this process using single-photon interactions, and expanded the work to include larger complexes of C_6H_5Cl + NH_3 and higher energies.

98 4 69 070

93-07540

14. SUBJECT TERM	5
------------------	---

15. NUMBER OF PAGES

16. PRICE CODE

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

9. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

OF REPORT

17. SECURITY CLASSIFICATION

UNCLASSIFIED

OFFICE OF NAVAL RESEARCH

GRANT N00014-88-K-0483

R & T Code 413n008

Technical Report No. 39

Intracluster Reactions of Chlorobenzene/Ammonia Mixed Complexs

by

J. R. Grover, B.-M. Cheng, William J. Herron, M. Todd Coolbaugh, William R. Peifer and James F. Garvey*

Prepared for Publication in NSLS Annual Report Brookhaven National Labs, Uptown, NY

Acheson Hall
Department of Chemistry
University at Buffalo
The State University of New York at Buffalo
Buffalo, NY
14214

April 3, 1993

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

INTRACLUSTER REACTIONS OF CHLOROBENZENE/AMMONIA MIXED COMPLEXES

J. R. Grover*, B.-M. Cheng*, W. J. Herron*, M. T. Coolbaugh*, W. R. Peifer* and J. F Garvey*

*Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973

#Synchrotron Radiation Research Center, Taiwan, ROC

The spontaneous disintegration of (C₆H₅Cl₉NH₃)⁺ to form C₆H₅NH₃⁺ has been intensively studied by two-photon techniques at other laboratories. We examined this process using single-photon interactions, and expanded the work to include larger complexes of C₆H₅Cl + NH₃ and higher energies. The complexes were prepared by jet expansions of 0.50% C₆H₅Cl in NH₃, using a nozzle 0.010 cm in diameter, the resulting mixtures being analyzed by the method already described¹. A sharp onset of C₆H₅NH₃+ from C₆H₅Cl•NH₃ was found at 8.947 ± 0.003 eV, which, when combined with the known heat of formation of $C_6H_5NH_3^+$, gives a dissociation energy $D(C_6H_5Cl \cdot NH_3) = ca$. 2 kcal mol⁻¹. Production of C₆H₅NH₃+ from trimers was too weak in the onset region to permit measurement. The ion $C_6H_5NH_2^+$ was also observed, with onsets of 8.849 ± 0.009 and 8.855 ± 0.029 eV from C₆H₅Cl₉NH₃ and C₆H₅Cl₁(NH₃)₂ respectively, clearly below the onset for C₆H₅NH₃+, but far above the thermochemical thresholds near 7.6 eV. For the "parent ions" (C₆H₅Cl•NH₃)+, C₆H₅Cl(NH₃)₂+, and G₆H₅Cl(NH₃)₃+ onsets were found at 8.74 ± 0.02 , 8.652 ± 0.013 , and 8.555 ± 0.012 eV. However, product resolution experiments indicate that in the onset region (C₆H₅Cl•NH₃)+ is apparently produced entirely from trimers. This value of the dimer ion onset therefore implies that $D([C_6H_5Cl \bullet NH_3]^+) \ge ca.$ 9 kcal mol⁻¹ (Fig.1). On the other hand, $C_6H_5NH_3^+$ is produced from C₆H₅Cl•NH₃ at energies >11.5 eV, a process not yet understood. 1,718

Figure 1. Energy diagram of the system $C_6H_5Cl + NH_3$. The ionization potential for $(C_6H_5Cl \cdot NH_3)^+$ is an upper limit if the measured value pertains to a trimer instead of the dimer. (All energies in eV.)

¹J. R. Grover, W. J. Herron, M. T. Coolbaugh, W. R. Peifer and J. F. Garvey, J. Phys. Chem. 95, 6473-6481 (1991).

This research was carried out at Brookhaven National Laboratory under contract DE-AC02-76CH00016 with the U.S. Department of Energy and supported in part by its Division of Chemical Sciences, Office of Basic Energy Sciences, and in part by the Office of Naval Research.

DECC

⁺Department of Chemistry, SUNY at Buffalo, Buffalo, NY 14214